DOD
Search
Discussions
Biomedical Jobmarket
News
DOD Alert
Edit DOD
 
ACCOUNT
Login
Register
Forgotten Password?
 
 
The Effect of PPARγ-Agonism on LDL Subclass Profile in Patients with Type 2 Diabetes and Coronary Artery Disease
 
Diabetes OD > Diabetic Complications > T2DM > Cardiovascular > Myocardial Infarction > Small LDL > Journal Article

(Journal Article): The Effect of PPARγ-Agonism on LDL Subclass Profile in Patients with Type 2 Diabetes and Coronary Artery Disease
 
Lautamaki R, Nuutila P, Airaksinen KE, Leino A, Hiekkanen H, Turiceanu M, Stewart M, Knuuti J, Ronnemaa T (Turku PET Centre, University of Turku, Turku, Finland, tapani.ronnemaa@utu.fi )
 
IN: Rev Diabetic Stud 2006; 3(1):31-38
Impact Factor(s) of Rev Diabetic Stud: 0.125 (2006)

Fulltext:    HTML  PDF

ABSTRACT: Patients with type 2 diabetes (T2DM) often present a preponderance of small, dense LDL particles (small-LDL), which are associated with a high risk of myocardial infarction. Some studies suggest that PPARγ-agonists increase LDL cholesterol but have divergent effects on various LDL subclasses in T2DM patients. We studied the effect of rosiglitazone on the LDL subclass profile in T2DM patients with verified coronary artery disease (CAD). 58 patients with T2DM (HbA1c < 8.5%) and CAD were enrolled in a 16-week, randomized, double-blind and placebo-controlled trial with rosiglitazone 8mg/day (n = 29) or placebo (n = 29). The LDL subclass profile was measured with gel electrophoresis. Rosiglitazone improved insulin sensitivity and glycemic control. Total cholesterol did not change after rosiglitazone treatment (p = 0.062, ANCOVA adjusted for gender and baseline values), whereas LDL (including IDL) cholesterol increased from 2.33 ± 0.48 to 2.67 ± 0.61 mmol/l (p = 0.002 vs. baseline, p = 0.0497 vs. placebo) and large buoyant LDL (large-LDL > 250Å) increased from 1.31 ± 0.36 to 1.46 ± 0.42 mmol/l (p = 0.010 vs. baseline, p = 0.044 vs. placebo) in the rosiglitazone group. No significant changes occurred to the concentration of small-LDL (< 250Å), the average LDL particle size, or HDL or triglyceride concentrations. Whole-body insulin sensitivity was associated with the average LDL particle size after intervention in the whole population (r = 0.40, p = 0.002) and in the rosiglitazone group (r = 0.43, p = 0.020). In conclusion, in T2DM patients with CAD, rosiglitazone treatment significantly increases the concentration of large (buoyant) LDL cholesterol, but not of small dense LDL cholesterol. The long term consequences of this divergent effect of rosiglitazone on LDL subfractions require further exploration.

TYPE OF PUBLICATION: Original article

REFERENCES:

  1. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998. 339:229-234.
  2. Galeano NF, Al Haideri M, Keyserman F, Rumsey SC, Deckelbaum RJ. Small dense low density lipoprotein has increased affinity for LDL receptor-independent cell surface binding sites: a potential mechanism for increased atherogenicity. J Lipid Res 1998. 39:1263-1273.
  3. Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, Krauss RM. Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 1988. 260:1917-1921.
  4. Stampfer MJ, Krauss RM, Ma J, Blanche PJ, Holl LG, Sacks FM, Hennekens CH. A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. JAMA 1996. 276:882-888.
  5. Nigon F, Lesnik P, Rouis M, Chapman MJ. Discrete subspecies of human low density lipoproteins are heterogeneous in their interaction with the cellular LDL receptor. J Lipid Res 1991. 32:1741-1753.
  6. Scheffer PG, Bos G, Volwater HG, Dekker JM, Heine RJ, Teerlink T. Associations of LDL size with in vitro oxidizability and plasma levels of in vivo oxidized LDL in Type 2 diabetic patients. Diabet Med 2003. 20:563-567.
  7. Vakkilainen J, Makimattila S, Seppala-Lindroos A, Vehkavaara S, Lahdenpera S, Groop PH, Taskinen MR, Yki-Jarvinen H. Endothelial dysfunction in men with small LDL particles. Circulation 2000. 102:716-721.
  8. Takano H, Nagai T, Asakawa M, Toyozaki T, Oka T, Komuro I, Saito T, Masuda Y. Peroxisome proliferator-activated receptor activators inhibit lipopolysaccharide-induced tumor necrosis factor-alpha expression in neonatal rat cardiac myocytes. Circ Res 2000. 87:596-602.
  9. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998. 391:79-82.
  10. Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999. 20:649-688.
  11. Chiquette E, Ramirez G, DeFronzo R. A meta-analysis comparing the effect of thiazolidinediones on cardiovascular risk factors. Arch Intern Med 2004. 164:2097-2104.
  12. Tack CJ, Smits P, DeMacker PN, Stalenhoef AF. Troglitazone decreases the proportion of small, dense LDL and increases the resistance of LDL to oxidation in obese subjects. Diabetes Care 1998. 21:796-799.
  13. Winkler K, Konrad T, Fullert S, Friedrich I, Destani R, Baumstark MW, Krebs K, Wieland H, Marz W. Pioglitazone reduces atherogenic dense LDL particles in nondiabetic patients with arterial hypertension: a double-blind, placebo-controlled study. Diabetes Care 2003. 26:2588-2594.
  14. Goldberg RB, Kendall DM, Deeg MA, Buse JB, Zagar AJ, Pinaire JA, Tan MH, Khan MA, Perez AT, Jacober, SJ. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care 2005. 28:1547-1554.
  15. Freed MI, Ratner R, Marcovina SM, Kreider MM, Biswas N, Cohen BR, Brunzell JD. Effects of rosiglitazone alone and in combination with atorvastatin on the metabolic abnormalities in type 2 diabetes mellitus. Am J Cardiol 2002. 90:947-952.
  16. Lautamäki R, Airaksinen KE, Seppänen M, Toikka J, Luotolahti M, Ball E, Borra R, Härkönen R, Iozzo P, Stewart M, Knuuti J, Nuutila P. Rosiglitazone improves myocardial glucose uptake in patients with type 2 diabetes and coronary artery disease: a 16-week randomized, double-blind, placebo-controlled study. Diabetes 2005. 54:2787-2794.
  17. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979. 237:E214-E223.
  18. Hoefner DM, Hodel SD, O'Brien JF, Branum EL, Sun D, Meissner I, McConnell JP. Development of a rapid, quantitative method for LDL subfractionation with use of the Quantimetrix Lipoprint LDL System. Clin Chem 2001. 47:266-274.
  19. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972. 18:499-502.
  20. Shimabukuro M, Higa N, Asahi T, Oshiro Y, Takasu N. Fluvastatin improves endothelial dysfunction in overweight postmenopausal women through small dense low-density lipoprotein reduction. Metabolism 2004. 53:733-739.
  21. Carmena R, Duriez P, Fruchart JC. Atherogenic lipoprotein particles in atherosclerosis. Circulation 2004. 109:III2-III7.
  22. Howard BV, Robbins DC, Sievers ML, Lee ET, Rhoades D, Devereux RB, Cowan LD, Gray RS, Welty TK, Go OT, Howard WJ. LDL cholesterol as a strong predictor of coronary heart disease in diabetic individuals with insulin resistance and low LDL: The Strong Heart Study. Arterioscler Thromb Vasc Biol 2000. 20:830-835.
  23. Makimattila S, Liu ML, Vakkilainen J, Schlenzka A, Lahdenpera S, Syvanne M, Mantysaari M, Summanen P, Bergholm R, Taskinen MR, Yki-Jarvinen H. Impaired endothelium-dependent vasodilation in type 2 diabetes. Relation to LDL size, oxidized LDL, and antioxidants. Diabetes Care 1999. 22:973-981.
  24. Caixas A, Ordonez-Llanos J, de Leiva A, Payes A, Homs R, Perez A. Optimization of glycemic control by insulin therapy decreases the proportion of small dense LDL particles in diabetic patients. Diabetes 1997. 46:1207-1213.
  25. Rivellese AA, Patti L, Romano G, Innelli F, Di Marino L, Annuzzi G, Iavicoli M, Coronel GA, Riccardi G. Effect of insulin and sulfonylurea therapy, at the same level of blood glucose control, on low density lipoprotein subfractions in type 2 diabetic patients. J Clin Endocrinol Metab 2000. 85:4188-4192.
  26. St John SM, Rendell M, Dandona P, Dole JF, Murphy K, Patwardhan R, Patel J, Freed M. A comparison of the effects of rosiglitazone and glyburide on cardiovascular function and glycemic control in patients with type 2 diabetes. Diabetes Care 2002. 25:2058-2064.
  27. Krauss RM. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care 2004. 27:1496-1504.
  28. Mack WJ, Krauss RM, Hodis HN. Lipoprotein subclasses in the Monitored Atherosclerosis Regression Study (MARS). Treatment effects and relation to coronary angiographic progression. Arterioscler Thromb Vasc Biol 1996. 16:697-704.
  29. Brehm A, Pfeiler G, Pacini G, Vierhapper H, Roden M. Relationship between Serum Lipoprotein Ratios and Insulin Resistance in Obesity. Clin Chem 2004. 50:2316-2322.
  30. Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia 2003. 46:733-749.
  31. Festa A, D'Agostino R Jr, Mykkanen L, Tracy RP, Hales CN, Howard BV, Haffner SM. LDL particle size in relation to insulin, proinsulin, and insulin sensitivity. The Insulin Resistance Atherosclerosis Study. Diabetes Care 1999. 22:1688-1693.
  32. Garvey WT, Kwon S, Zheng D, Shaughnessy S, Wallace P, Hutto A, Pugh K, Jenkins AJ, Klein RL, Liao Y. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes 2003. 52:453-462.
  33. Hällsten K, Virtanen KA, Lönnqvist F, Janatuinen T, Turiceanu M, Rönnemaa T, Viikari J, Lehtimäki T, Knuuti J, Nuutila, P. Enhancement of insulin-stimulated myocardial glucose uptake in patients with Type 2 diabetes treated with rosiglitazone. Diabet Med 2004. 21:1280-1287.
  34. Sharman MJ, Gomez AL, Kraemer WJ, Volek JS. Very low-carbohydrate and low-fat diets affect fasting lipids and postprandial lipemia differently in overweight men. J Nutr 2004. 134:880-885.
  35. Kullo IJ, de Andrade M, Boerwinkle E, McConnell JP, Kardia SL, Turner ST. Pleiotropic genetic effects contribute to the correlation between HDL cholesterol, triglycerides, and LDL particle size in hypertensive sibships. Am J Hypertens 2005. 18:99-103.
  36. Kazumi T, Kawaguchi A, Hozumi T, Nagao M, Iwahashi M, Hayakawa M, Ishihara K, Yoshino G. Low density lipoprotein particle diameter in young, nonobese, normolipidemic Japanese men. Atherosclerosis 1999. 142:113-119.
  37. Austin MA, King MC, Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation 1990. 82:495-506.


 
Respond on this Journal Article!
Hint: Your Response should directly apply to The Effect of PPARγ-Agonism on LDL Subclass Profile in Patients with Type 2 Diabetes and Coronary Artery Disease. Please check, if this context applies best to your contribution. Otherwise click HERE to change to the appropriate subject area. The actual subject area is Small LDL.