(Journal Article): Dihydropyridine-sensitive calcium channels in cardiac and skeletal muscle membranes: studies with antibodies against the alpha subunits.
Takahashi M, Catterall WA (Department of Pharmacology, University of Washington, Seattle 98195, USA)
IN:
Biochemistry
1987; 26(17):5518-5526
Impact Factor(s) of Biochemistry: 4.008 (2004), 3.922 (2003), 4.114 (2001)
ABSTRACT: Polyclonal antibodies (PAC-2) against the purified skeletal muscle calcium channel were prepared and shown to be directed against alpha subunits of this protein by immunoblotting and immunoprecipitation. These polypeptides have an apparent molecular weight of 162,000 without reduction of disulfide bonds. Under conditions where the functional properties of the purified skeletal muscle calcium channel are retained, beta subunits (Mr 50,000) and gamma subunits (Mr 33,000) are coprecipitated, demonstrating specific noncovalent association of these three polypeptides in the purified skeletal muscle channel. PAC-2 immunoprecipitated cardiac calcium channels labeled with [3H]isopropyl 4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-2,6-dimethyl-5- (methoxycarbonyl)pyridine-3-carboxylate ([3H]PN200-110) at a 3-fold higher concentration than skeletal muscle channels. Preincubation with cardiac calcium channels blocked only 49% of the immunoreactivity of PAC-2 toward skeletal muscle channels, indicating that these two proteins have both homologous and distinct epitopes. The immunoreactive component of the cardiac calcium channel was identified by immunoprecipitation and polyacrylamide gel electrophoresis as a polypeptide with an apparent molecular weight of 170,000 before reduction of disulfide bonds and 141,000 after reduction, in close analogy with the properties of the alpha 2 subunits of the skeletal muscle channel. It is concluded that these two calcium channels have a homologous, but distinct, alpha subunit as a major polypeptide component.
TYPE OF PUBLICATION: Original article
Articles citing this article:
|