(Journal Article): HCO3- Transport in Relation to Mucus Secretion from Submucosal Glands
 
Joo NS, Krouse ME, Wu JV, Saenz Y, Jayaraman S, Verkman A, Wine JJ (Cystic Fibrosis Research Laboratory, Stanford University. Stanford, CA, USA. Ethicon Endo-Surgery, Inc. Cincinnati, OH, USA. Departments of Medicine and Physiology, Cardiovascular Research Institute, University of California. San Francisco, CA, USA, wine@stanford.edu )
 
IN: JOP. J Pancreas (Online) 2001; 02(4 Suppl.):280-284

Fulltext:    HTML  PDF

ABSTRACT: The role of HCO(3)(-) transport in relation to fluid secretion by submucosal glands is being studied in sheep, pigs, cats and humans. Optical methods have been developed to measure secretion rates of mucus volume from single glands with sufficient temporal resolution to detect differences in minute-by-minute secretion rates among glands. The ionic composition and viscoelastic properties of the uncontaminated gland mucus are measured with a combination of ratiometric fluorescent indicators, ion-selective microelectrodes, FRAP, and a miniaturized, magnetic force viscometer. Sheep glands secreted basally at low rates, showed small, transient responses to alpha- and beta-adrenergic agonists, and large responses to a cholinergic agonist, carbachol. Peak rates and temporal patterns of responses to carbachol differed markedly among glands. To assess the contribution of HCO(3)(-) transport to gland secretion, we either inhibited Na(+)/K(+)/2Cl(-) cotransporter (NKCC) with bumetanide or replaced HCO(3)(-) with HEPES and gassed with O(2). Bumetanide caused a small, non-significant inhibition of basal secretion, but removal of HCO(3)(-)/CO(2) significantly reduced basal secretion almost by half. Both bumetanide and removal of HCO(3)(-)/CO(2) reduced carbachol-stimulated secretion significantly, with HCO(3)(-) removal having the larger effect: a reduction to 33% of control (P less than 0.01). The remaining secretory response to carbachol was nearly eliminated by bumetanide. Sheep mucus pH measured with ion selective electrodes was about 0.4 log more acidic than the bath. In humans, we observed the same pattern of responses to agonists and antagonists as in sheep, and observed a mucus pH of 7.0 using 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF). We hypothesize that HCO(3)(-) transport is important in the formation of mucus secretion, but that most HCO(3)(-) is scavenged before the final mucus appears at the duct opening. Cystic fibrosis transmembrane conductance regulator's (CFTR) best understood function is as an anion channel, but increasing attention has been given to its role in HCO(3)(-) transport. By analogy with organ-specific CFTR effects on Cl(-) transport, it seems likely that the relative importance of CFTR in HCO(3)(-) transport will also vary across organs. Because lung disease is by far the greatest cause of mortality among people with cystic fibrosis, it is important to determine how loss of CFTR function causes lung disease. We are testing the hypothesis that loss of CFTR alters serous cell secretion in the lungs, and the corollary that such loss contributes to cystic fibrosis (CF) lung disease. CFTR is highly expressed in serous cells of submucosal glands and the Calu-3 serous cell model secretes HCO(3)(-). Human gland serous cells grown in culture and tested for fluid secretion under open circuit conditions showed reduced fluid secretion to all mediators. However, submucosal glands are complex organs containing at least 4 distinct regions and at least that many cell types, making it difficult to predict the consequences on whole-organ function from experiments with individual cell types. Therefore, we have resurrected long-neglected methods for studying whole-gland function, and have attempted to improve them in a variety of ways. We are refining these methods and increasing our understanding of gland function by studying tracheal glands from sheep, pigs and cats. As human tissues become available, they are studied with the best methods presently available. The key questions now being asked are: Is mucus secretion from submucosal glands altered in cystic fibrosis? If so, how is it altered and how does it contribute to CF lung disease? Answering the last question will require an understanding of how glands interact with other regions of the lung. In the context of this meeting, we present preliminary data on the role of HCO(3)(-) in gland mucus secretion.

TYPE OF PUBLICATION: Round Table



 
Respond on this Journal Article!
Hint: Your Response should directly apply to HCO3- Transport in Relation to Mucus Secretion from Submucosal Glands. Please check, if this context applies best to your contribution. Otherwise click HERE to change to the appropriate subject area. The actual subject area is 2001.